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Abstract
A natural procedure is introduced to replace the traditional, perturbatively
generated counter terms to yield a formulation of covariant, self-interacting,
nonrenormalizable scalar quantum field theories that has the added virtue of
exhibiting a divergence-free perturbation analysis. To achieve this desirable
goal it is necessary to reexamine the meaning of the free theory about which
such a perturbation takes place.

PACS numbers: 11.10.Kk, 11.15.Tk

1. Introduction

Nonrenormalizable quantum field theories, such as ϕ4
n models, with a spacetime dimension

n � 5, need nontrivial counter terms for otherwise they lead to (generalized) free theories
as shown by Aizenman [1] and Fröhlich [2]. A free quantum theory has a trivial classical
limit and so it cannot correspond to the correct quantization of the original nontrivial classical
theory. Regularized perturbation theory suggests an unending series of distinct and ever more
singular counter terms which cannot be considered an acceptable solution. This situation
suggests that we look elsewhere for suitable counter terms, and this paper addresses one such
search.

In section 2 we outline a Euclidean space lattice model for ϕ4
n models for n � 5, which

includes an unconventional counter term along with the traditional terms expected in such a
lattice formulation. In section 3 we present the background for choosing this form for the
model and explain the rationale for choosing the atypical counter term. Section 4 shows that
general correlation functions can be suitably bounded by correlation functions at a sharp time
as determined by the ground-state distribution. In section 5 we take up the question of the
continuum limit and study mass renormalization, coupling constant renormalization, and field
strength renormalization. Here we show, thanks to the properties of our chosen counter term,
that a suitable perturbation theory of the quartic interaction is divergence free. Importantly,
this perturbation theory is not about the usual free theory but about a pseudofree theory, which
is a model that contains the atypical counter term but does not include the quartic interaction.
The reason for this divergence-free character is related to a simple idea already illustrated
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by idealized lattice space integrals presented in section 3. Finally, section 6 offers additional
discussion and conclusions, and suggests a possible application of the present kind of approach
to other models, most specifically the ϕ4

4 model which is perturbatively renormalizable, but
generally regarded as becoming a (generalized) free theory when studied as the continuum
limit of a conventional lattice formulation. While our proposal seems to be analytically
challenging, there is the strong possibility that numerical Monte Carlo methods may prove
useful.

2. Overview of the model

2.1. Preliminaries

The present section is devoted to a presentation of the model, while the following sections
discuss the motivation and analysis that has led to the present formulation. We focus on
ϕ4

n, n � 5, models formulated as Euclidean functional integrals; other models may possibly
be treated by analogous procedures.

We suppose Euclidean spacetime is replaced by a periodic, hypercubic lattice with L sites
on an edge, L < ∞, and a uniform lattice spacing of a, a > 0. Let the sites be labeled by
k = (k0, k1, k2, . . . , ks), where kj ∈ Z, k0 denotes the future time direction under a Wick
rotation, and s = n − 1. We denote lattice sums (and products) over all lattice points by �k

(and �k), and, importantly, lattice sums (and products) over just a spatial slice at a fixed value
of k0 by �′

k (and �′
k). The total number of sites is N = Ln, while the number of lattice sites

in a spatial slice is N ′ = Ls .
In eventually taking the continuum limit we shall do so in two steps. First, we let L → ∞

and a → 0 together so that the full spacetime volume V = (La)n remains large but finite; so
too for the spatial volume V ′ = (La)s . Second, we take the limit that both V and V ′ diverge.
In this fashion we can discuss finite spatial volumes which would have been less convenient if
we had let L → ∞ before taking the limit a → 0.

2.2. Lattice action

Following aspects of the discussion in [3], we first introduce an important set of dimensionless
constants by

Jk,l ≡ 1

2s + 1
δk,l∈{k∪knn}, (1)

where δk,l is a Kronecker delta. This notation means that an equal weight of 1/(2s +1) is given
to the 2s + 1 points in the set composed of k and its 2s nearest neighbors in the spatial sense
only; Jk,l = 0 for all other points in that spatial slice. (Specifically, we define Jk,l = 1/(2s +1)

for the points l = k = (k0, k1, k2, . . . , ks), l = (k0, k1 ± 1, k2, . . . , ks), l = (k0, k1, k2 ± 1,

. . . , ks), . . . , l = (k0, k1, k2, . . . , ks ± 1).) This definition implies that �′
lJk,l = 1.

We next write the lattice action for the full theory, including the quartic nonlinear
interaction as well as the proposed counter term, as

I (φ, h̄, N) = 1

2

∑
k

∑
k∗

(φk∗ − φk)
2an−2 +

1

2
m2

0

∑
k

φ2
k a

n + λ0

∑
k

φ4
k a

n +
1

2
h̄2

∑
k

Fk(φ)an,

(2)

where k∗ denotes the n nearest neighbors to k in the positive sense, i.e., k∗ ∈ {(k0 + 1,

k1, . . . , ks), . . . , (k0, k1, . . . , ks + 1)}. The last term, which represents the heart of the present
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procedure, is the suggested counter term and is given (with all the following sums over the
spatial slice at fixed k0) by

Fk(φ) ≡ 1

4

(
N ′ − 1

N ′

)2

a−2s
∑
r,t

′ Jr,kJt,kφ
2
k[

�′
lJr,lφ

2
l

][
�′

mJt,mφ2
m

]
− 1

2

(
N ′ − 1

N ′

)
a−2s

∑
t

′ Jt,k[
�′

mJt,mφ2
m

]
+

(
N ′ − 1

N ′

)
a−2s

∑
t

′ J 2
t,kφ

2
k[

�′
mJt,mφ2

m

]2 . (3)

Observe that we have included the proper dependence on h̄ for the counter term implying that
its contribution disappears in the classical limit in which h̄ → 0. It may be noted that each of
the separate parts of the counter term scales as the inverse square of the overall field magnitude.
The reason we have chosen the given counter term will be discussed in the following sections;
in section 6 we even show that the counter term may be considered to arise from a factor
ordering ambiguity of the conventional theory.

One feature of the counter term is the fact that each term involves up to two nearest-
neighbor, spatially separated lattice points. This feature is part of the regularization in the
lattice formulation of the model. However, if a second-order phase transition is achieved in
the continuum limit, then such a regularization should still lead to a relativistic theory in the
limit.

It is important to note that as λ0 → 0 and the quartic interaction is turned off, the lattice
action does not pass to that of the usual free theory but to that of the free theory plus the
original counter term. Such a theory has been called a pseudofree theory [4], and we shall
show that the interacting theory with λ0 > 0 exhibits a divergence-free perturbation series
about the pseudofree theory. A natural argument in favor of the pseudofree theory is given in
section 6.

In conventional quantum field theory, counter terms are chosen to deal with the emergence
of divergences; in the approach adopted in this paper, the counter term is chosen to deal with
the cause of divergences. Relative to conventional treatments, therefore, it is safe to say that
using the new counter term changes everything relative to what one normally expects based
on the usual free theory. In particular, do not look for ‘normal ordering’; instead, look for
‘multiplicative renormalization’.

2.3. Generating function

One important ingredient has been left out of the lattice action, and that is the factor Z
representing the field strength renormalization. We introduce this factor most simply by
adopting the following expression for the lattice space generating function:

S(h) ≡ M0

∫
eZ−1/2�khkφka

n/h̄−I (φ,a,N)/h̄�k dφk, (4)

where {hk} determines an appropriate test sequence, and the normalization factor M0 ensures
that S(0) = 1. By a field rescaling, i.e., φk → Z1/2φk , the factor Z can be removed from the
source term and introduced into the lattice action; we shall have occasion to use both forms
of this integral. The form of the generating function in terms of physical fields is given in
equation (61).

The continuum limit will be taken as

E{h} ≡ lim
a,L

S(h), (5)
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as a → 0 and L → ∞ together such that, as discussed above, C ≡ La remains constant
and finite. The argument of E involves suitable limiting test functions hk → h(x) where
ka → x ∈ R

n. For sufficiently large C, it may be unnecessary to take the final limit C → ∞.

3. Rationale for counter term

From the lattice action it is a simple step to write down the lattice Hamiltonian operator

H ≡ −1

2
h̄2a−s

∑
k

′ ∂2

∂φ2
k

+ V(φ)

≡ −1

2
h̄2a−s

∑
k

′ ∂2

∂φ2
k

+ V0(φ) +
1

2
h̄2

∑
k

′
Fk(φ)as

= −1

2
h̄2a−s

∑
k

′ ∂2

∂φ2
k

+
1

2

∑
k

′∑
k∗

′
(φk∗ − φk)

2as−2 +
1

2
m2

0

∑
k

′
φ2

k a
s

+ λ0

∑
k

′
φ4

k a
s +

1

2
h̄2

∑
k

′
Fk(φ)as − E0. (6)

In addition, we introduce the ground state �(φ) for this Hamiltonian operator. The constant
E0 is chosen so that �(φ) satisfies the Schrödinger equation

H�(φ) = 0, (7)

which implies that the Hamiltonian operator can also be written as

H = −h̄2

2
a−s

∑
k

′ ∂2

∂φ2
k

+
h̄2

2
a−s

∑
k

′ 1

�(φ)

∂2�(φ)

∂φ2
k

. (8)

Since the ground state �(φ) does not vanish, it can be written in the generic form

�(φ) = e−U(φ,a,h̄)/2

D(φ)
, (9)

and thus (using the abbreviation X,k ≡ ∂X/∂φk and the spatial summation convention)

V(φ) = 1
2h̄

2a−sDeU/2
[
D−1e−U/2

]
,kk

= 1
2h̄

2a−s
[

1
4U 2,k − 1

2U,kk +D−1U,k D,k +2D−2D2
k − D−1D,kk

]
. (10)

We insist that the atypical counter term Fk(φ) is determined by the denominator D alone by
requiring that

1
2h̄

2
∑

k

′
Fk(φ)as ≡ 1

2h̄
2a−sDD−1,kk = 1

2h̄
2a−s[2D−2D2,k −D−1D,kk ]. (11)

There are multiple solutions to this equation which lead to ground state functions that are
locally square integrable near the origin in field space. However, the only solution consistent
with a nowhere vanishing ground state is given (up to an overall factor) by

D(φ) = �′
k

[
�′

lJk,lφ
2
l

](N ′−1)/4N ′
. (12)

In point of fact, D was chosen first, and the counter term was then derived from D by this very
differential equation. Why we have chosen this specific form for D is discussed below.

The ground state �(φ) leads to the probability density

�(φ)2 ≡ K
e−U(φ,a,h̄)

�′
k

[
�′

lJk,lφ
2
l

](N ′−1)/2N ′ , (13)
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where K accounts for normalization of this expression given the additional assumption that
U(0, a, h̄) = 0. The normalization integral then itself reads

K

∫
e−U(φ,a,h̄)

�′
k

[
�′

lJk,lφ
2
l

](N ′−1)/2N ′ �
′
k dφk = 1. (14)

Before commenting on this integral further, we wish to discuss several simpler integrals.

3.1. A discussion of many-dimensional integrals

Consider the family of Gaussian integrals given (at some fixed k0) by

IG(2p) ≡
∫ [

�′
kφ

2
k

]p
e−A�′

kφ
2
k �′

k dφk, (15)

where p ∈ {0, 1, 2, 3, . . .}, and we assume that A is of ‘normal size’, e.g., 0.1 < A < 10.
Although these integrals can be evaluated explicitly, we prefer to study the qualitative behavior
of such integrals for large values of N ′, i.e., when N ′ � 1. For this purpose it is highly
instructive to introduce hyper-spherical coordinates [5, 6] defined by

φk ≡ κηk, 0 � κ < ∞, −1 � ηk � 1, �′
kη

2
k ≡ 1, �′

kφ
2
k ≡ κ2. (16)

Here κ acts as a hyper-radius field variable and the {ηk} variables constitute an N ′-dimensional

direction field. Note well that κ ≡
√

�′
kφ

2
k is the ‘radius’ of all the field variables in a given

spatial slice of the lattice at some fixed k0. In terms of these variables, it follows that

IG(2p) = 2
∫

[κ2]p e−Aκ2
κN ′−1dκδ

(
1 − �′

kη
2
k

)
�′

k dηk. (17)

Observe that the integrand depends on the radius κ , but it does not depend on the angular
variables {ηk}. For very large N ′, the integral over κ can be studied by steepest descent
methods. To leading order, the integrand is narrowly peaked at values of κ 	 (N ′/2A)1/2,
namely at large values of κ . As a consequence, for each value of A, the integrand is supported
on a disjoint set of κ as N ′ → ∞. This well-known fact [7] leads to divergences in perturbation
calculations. For example, let us study

I �
G(2) =

∫ [
�′

kφ
2
k

]
e−A��′

kφ
2
k �′

k dφk, (18)

which is the same type of Gaussian integral for a different value of A. For this study, we
introduce the perturbation series

I �
G(2) = IG(2) − �AIG(4) + 1

2 (�A)2IG(6) − · · · , (19)

where �A ≡ A� − A. Since IG(2p)/IG(2) = O(N ′(p−1)), this series exhibits divergences as
N ′ → ∞. It is not difficult to convince oneself that such divergences are quite analogous to
those that appear in quantum field theory; see [5] for further examples of this sort.

If the factor κ(N ′−1) is removed from IG(2p), we are led to consider

I ′
G(2p) = 2

∫
[κ2]p e−Aκ2

dκδ
(
1 − �′

kη
2
k

)
�′

k dηk. (20)

Now, the integrand is broadly supported and no longer favors large κ values. Consequently, a
perturbation series evaluation of

I ′�
G (2) = 2

∫
κ2 e−A�κ2

dκ δ
(
1 − �′

kη
2
k

)
�′

k dηk = I ′
G(2) − �AI ′

G(4) +
1

2
(�A)2I ′

G(6) − · · ·
(21)

exhibits no divergences since I ′
G(2p)/I ′

G(2) = O(N ′0).

5
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Unlike the original integrals over κ , integrals over the {ηk} direction field variables cannot
diverge under normal circumstances since each variable satisfies −1 � ηk � 1. We will
encounter such variables in the denominator of (14); however, the form of that denominator
has been specifically chosen to ensure that such integrals converge near zero for all N ′ < ∞.

3.2. Relevance for the ground-state distribution

The normalization integral for the ground-state distribution, equation (14), expressed in terms
of hyper-spherical coordinates, becomes

2K

∫
e−U(κη,a,h̄)

�′
k

[
�′

lJk,lη
2
l

](N ′−1)/2N ′ dκδ
(
1 − �′

kη
2
k

)
�′

k dηk = 1. (22)

Note well that the absence of the factor κ(N ′−1) in this expression is a direct result of the
counter term in the lattice Hamiltonian, which in turn gave rise to the denominator factor D
in the ground state �(φ). Just like the elementary examples in which κ(N ′−1) was artificially
removed, there is no peaking of the integrand in κ due to that factor. For integrals such as

K

∫ [
�′

kφ
2
k

]p e−U(φ,a,h̄)

�′
k

[
�′

lJk,lφ
2
l

](N ′−1)/2N ′ �
′
k dφk (23)

it is clear that the κ-dependence of the integrand is most likely spread rather broadly; this
conclusion would be false if the factor κ(N ′−1) had not been canceled by part of the term D2.

4. Correlation functions and their bounds

In this section, following [3], we wish to show that the full spacetime correlation functions
can be controlled by their sharp-time behavior along with a suitable choice of test sequences.

Let the notation

φu ≡ �kukφka
n (24)

denote the full spacetime summation over all lattice sites where {uk} denotes a suitable test
sequence. We also separate out the temporal part of this sum in the manner

φu ≡ �k0aφu′ ≡ �k0a�′
kukφka

s. (25)

Observe that the notation φu′ (with the prime) implies a summation only over the spatial lattice
points for a fixed (and implicit) value of the temporal lattice value k0.

Let the notation 〈(·)〉 denote full spacetime averages with respect to the field distribution
determined by the lattice action, and then let us consider full spacetime correlation functions
such as

〈φu(1)φu(2) · · · φu(2q)〉 = �
k

(1)
0 ,k

(2)
0 ,...,k

(2q)

0
a2q〈φu′(1)φu′(2) · · · φu′(2q)〉, (26)

where q � 1 and the expectation on the right-hand side is over products of fixed-time summed
fields, φu′ , for possibly different times, which are then summed over their separate times. All
odd correlation functions are assumed to vanish, and furthermore, 〈1〉 = 1 in this normalized
spacetime lattice field distribution. It is also clear that

|〈φu(1)φu(2) · · ·φu(2q)〉| � �
k

(1)
0 ,k

(2)
0 ,...,k

(2q)

0
a2q |〈φu′(1)φu′(2) · · ·φu′(2q)〉|. (27)

At this point we turn our attention toward the spatial sums alone.

6
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We appeal to straightforward inequalities of the general form

〈AB〉2 � 〈A2〉〈B2〉. (28)

In particular, it follows that

〈φu′(1)φu′(2)φu′(3)φu′(4)〉2 �
〈
φ2

u′(1)φ
2
u′(2)

〉〈
φ2

u′(3)φ
2
u′(4)

〉
, (29)

and, in turn, that

〈φu′(1)φu′(2)φu′(3)φu′(4)〉4 �
〈
φ2

u′(1)φ
2
u′(2)

〉2〈
φ2

u′(3)φ
2
u′(4)

〉2 �
〈
φ4

u′(1)

〉〈
φ4

u′(2)

〉〈
φ4

u′(3)

〉〈
φ4

u′(4)

〉
. (30)

By a similar argument, it follows that

|〈φu′(1)φu′(2) · · · φu′(2q)〉| � �
2q

j=1

[〈
φ

2q

u′(j)

〉]1/2q
, (31)

which has bounded any particular mixture of spatial correlation functions at possibly different
times, by a suitable product of higher power expectations each of which involves field values
ranging over a spatial level, all at a single fixed lattice time. By time translation invariance of
the various single time correlation functions we can assert that〈

φ2r
u′(j)

〉
, (32)

which is defined at time k
(j)

0 , is actually independent of the time and, therefore, the result
could be calculated at any fixed time. In particular, we can express such correlation functions
as 〈

φ
2q

u′
〉 =

∫
φ

2q

u′ �(φ)2�′
k dφk. (33)

Thus we see that a bound on full spacetime correlation functions may be given in terms
of sharp-time correlation functions in the ground-state distribution.

5. The continuum limit

Before focusing on the limit a → 0 and L → ∞, let us note some important facts about
ground-state averages of the direction field variables {ηk}. First, we assume that such averages
have two important symmetries: (1) averages of an odd number of ηk variables vanish, i.e.,〈

ηk1 · · · ηk2p+1

〉 = 0, (34)

and (2) such averages are invariant under any spacetime translation, i.e.,〈
ηk1 · · · ηk2p

〉 = 〈
ηk1+l · · · ηk2p+l

〉
(35)

for any l ∈ Z
n due to a similar translational invariance of the lattice Hamiltonian. Second,

we note that for any ground-state distribution, it is necessary that
〈
η2

k

〉 = 1/N ′ for the simple
reason that �′

kη
2
k = 1. Hence, |〈ηkηl〉| � 1/N ′ as follows from the Schwarz inequality. Since〈[

�′
kη

2
k

]2〉 = 1, it follows that
〈
η2

kη
2
l

〉 = O(1/N ′2). Indeed, similar arguments show that for
any ground-state distribution〈

ηk1 · · · ηk2p

〉 = O(1/N ′p), (36)

which will be useful in the following.
Next, we choose to study the pseudofree model, namely, when the coupling constant

λ0 = 0. This is as close as we can get to the free model itself. Unfortunately, we cannot
solve equation (10) when V has the desired form. The best we can do is choose a form for
U(φ, a, h̄) in (9) that leads to an approximate form of the pseudofree model. In particular, we
choose

U(φ, a, h̄) = (1/h̄)�′
k,lφkAk−lφla

2s . (37)

7
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This expression is taken to be the form for U for the free model as if there was no counter term
and consequently D was replaced by 1. This ensures us that the potential V(φ) that follows
from (10) agrees with the desired free model to leading order in h̄. Specifically, with the given
choice for U and D, it follows that

V(φ) = 1
2�′

k,l,mφkAk−lAl−mφma3s − 1
2h̄A0N

′as + 1
2h̄

2�′
kFk(φ)as

+ h̄[(N ′ − 1)/4N ′]�′
k,r,mJr,kφkAk−mφm

/[
�′

lJr,lφ
2
l

]
a2s . (38)

We choose the matrix Ak−l so that the first term in (38) yields the desired gradient and mass
terms in the Hamiltonian expression (6). In particular, we note that to match the quadratic,
spatial lattice-derivative terms in the Hamiltonian (typically the most singular of the quadratic
terms), we can do so by choosing the elements of the matrix Ak−l = O(a−(s+1)). Although
this leads to only an approximate form for the pseudofree model, it is sufficient for our limited
purpose at present, namely, to determine the field strength renormalization constant Z.

5.1. Field strength renormalization

We now take up the question of the sharp-time averages given by∫
Z−p[�′

khkφka
s]2p�(φ)2�′

k dφk, (39)

where Z denotes the field strength renormalization factor and {hk} represents a suitable spatial
test sequence. These are exactly the kinds of expression that should become well behaved in
the continuum limit for a proper choice of Z. Thus, we are led to consider

K

∫
Z−p[�′

khkφka
s]2p e−�′

k,lφkAk−lφla
2s /h̄

�′
k

[
�′

lJk,lφ
2
l

](N ′−1)/2N ′ �
′
k dφk

= 2K

∫
Z−pκ2p[�′

khkηka
s]2p e−κ2�′

k,lηkAk−lηla
2s /h̄

�′
k

[
�′

lJk,lη
2
l

](N ′−1)/2N ′ dκδ
(
1 − �′

kη
2
k

)
�′

k dηk.

(40)

Our goal is to use this integral to determine a value for the field strength renormalization
constant Z. To estimate this integral we first replace two factors with η variables by their
appropriate averages. In particular, the expression in the exponent is estimated by

κ2�′
k,lηkAk−lηla

2s 	 κ2�′
k,lN

′−1Ak−la
2s ∝ κ2N ′a2sa−(s+1), (41)

and the expression in the integrand is estimated by

[�′
khkηka

s]2p 	 N ′−p[�′
khka

s]2p. (42)

The integral over κ is then estimated by first rescaling the variable κ2 → κ2/(N ′as−1), which
then leads to an overall integral-estimate proportional to

Z−p[N ′as−1]−pN ′−p[�′
khka

s]2p. (43)

Finally, for this result to be meaningful in the continuum limit, we are led to choose
Z = N ′−2a−(s−1). However, Z must be dimensionless, so we introduce a fixed positive
quantity q with dimensions of an inverse length, which allows us to set

Z = N ′−2(qa)−(s−1). (44)

This is a fundamental and important relation in our analysis.
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5.2. Mass renormalization

With notation where 〈(·)〉 denotes a full spacetime lattice-space average based on the lattice
action for the pseudofree theory, an expansion of the mass term leads to a series of terms of
the form 〈[

m2
0�kφ

2
k a

n
]p〉

, (45)

which in turn can be expressed as

m
2p

0 �
k

(1)
0 ,k

(2)
0 ,...,k

(p)

0
ap

〈[
�′

k(1)φ
2
k(1)a

s
][
�′

k(2)φ
2
k(2)a

s
] · · · [�′

k(p)φ
2
k(p)a

s
]〉
. (46)

Based on the inequality〈
�

p

j=1Aj

〉
� �

p

j=1

〈
A

p

j

〉1/p
, (47)

valid when Aj � 0 for all j , it follows that〈[
m2

0�kφ
2
k a

n
]p〉

� m
2p

0 �
k

(1)
0 ,k

(2)
0 ,...,k

(p)

0
ap

×{〈[
�′

k(1)φ
2
k(1)a

s
]p〉〈[

�′
k(2)φ

2
k(2)a

s
]p〉 · · · 〈[�′

k(p)φ
2
k(p)a

s
]p〉}1/p

. (48)

This leads us to consider〈[
m2

0�
′
kφ

2
k a

s
]p〉 = 2m

2p

0 aspK

∫
κ2p e−κ2�′

k,lηkAk−lηla
2s

�′
k

[
�′

lJk,lη
2
l

](N ′−1)/2N ′ dκδ
(
1 − �′

kη
2
k

)
� dηk, (49)

which, in the manner used previously, can be estimated as

〈[
m2

0�
′
kφ

2
k a

s
]p〉 ∝ m

2p

0 asp

[N ′a(s−1)]p
. (50)

To make sense in the continuum limit, this leads us to identify

m2
0 = N ′(qa)−1m2, (51)

with m2 being the physical mass. Moreover, it is noteworthy that

Zm2
0 = [N ′−2(qa)−(s−1)][N ′(qa)−1]m2 = [N ′(qa)s]−1m2, (52)

which for a finite spatial volume V ′ = N ′as leads to a finite nonzero result for Zm2
0.

5.3. Coupling constant renormalization

We repeat the previous calculation for an expansion of the quartic interaction term about the
pseudofree theory. This leads us to consider terms of the form〈[

λ0�kφ
4
k a

n
]p〉

, (53)

which in turn can be expressed as

λ
p

0 �
k

(1)
0 ,k

(2)
0 ,...,k

(p)

0
ap

〈[
�′

k(1)φ
4
k(1)a

s
][
�′

k(2)φ
4
k(2)a

s
] · · · [�′

k(p)φ
4
k(p)a

s
]〉

(54)

and bounded by〈[
λ0�kφ

4
k a

n
]p〉

� λ
p

0 �
k

(1)
0 ,k

(2)
0 ,...,k

(p)

0
ap

×{〈[
�′

k(1)φ
4
k(1)a

s
]p〉〈[

�′
k(2)φ

4
k(2)a

s
]p〉 · · · 〈[�′

k(p)φ
4
k(p)a

s
]p〉}1/p

. (55)

This leads us to consider〈[
λ0�

′
kφ

4
k a

s
]p〉 = 2λ

p

0 aspK

∫
κ4p

[
�′

kη
4
k

]p e−κ2�′
k,lηkAk−lηla

2s

�′
k

[
�′

lJk,lη
2
l

](N ′−1)/2N ′

× dκδ
(
1 − �′

kη
2
k

)
� dηk, (56)
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which, in the manner used previously, can be estimated as

〈[
λ0�

′
kφ

4
k a

s
]p〉 ∝ λ

p

0 N ′−pasp

[N ′a(s−1)]2p
, (57)

and to make sense in the continuum limit leads us to identify

λ0 = N ′3(qa)s−2λ, (58)

with λ being the physical coupling constant. Moreover, it is noteworthy that

Z2λ0 = [N ′−4(qa)−2(s−1)][N ′3(qa)s−2]λ = [N ′(qa)s]−1λ, (59)

which for a finite spatial volume V ′ = N ′as leads to a finite nonzero result for Z2λ0.

5.4. Physical version of the generating function

Based on the previous analysis we are led to reformulate the expression for the lattice space
generating function (4). We first make a change of integration variables such that φk → Z1/2φk

leading to the expression

S(h) ≡ M

∫
e�khkφka

n/h̄−I (Z1/2φ,a,N)/h̄�k dφk, (60)

where any constant Jacobian factor has been absorbed into a change of the overall normalization
factor from M0 to M. Finally, we introduce the explicit form for the lattice action from (2) into
(60) to yield

S(h) = M

∫
exp

{
�hkφka

n/h̄ − 1

2
[N ′2(qa)(s−1)]−1

∑
k

∑
k∗

(φk∗ − φk)
2an−2/h̄

− 1

2
[N ′(qa)s]−1m2

∑
k

φ2
k a

n/h̄ − [N ′(qa)s]−1λ
∑

k

φ4
k a

n/h̄

− 1

2
h̄2[N ′2(qa)(s−1)]

∑
k

Fk(φ)an/h̄

}
�k dφk. (61)

This expression contains a formulation of the lattice space generating function expressed in
terms of physical fields and constants.

5.5. Commentary

In our final expression above there are several noteworthy points to be made. In a finite
spatial volume V ′ = N ′as—which due to our hypercubic assumption for spacetime implies a
finite spacetime volume V = Nan—the coefficients of the physical mass m and the physical
coupling constant λ are both finite and nonzero. We have shown earlier in this section that
perturbation in both the quadratic mass term and the quartic nonlinear action leads to a series
which is term-by-term finite when perturbed about the pseudofree theory. If the finite spatial
volume is taken large enough (e.g., Milky Way sized), then a divergence-free perturbation
series is established. In other words, the introduction of the unusual counter term has resolved
any issues with typical ultraviolet divergences (and it is noteworthy that it has not been
necessary to maintain an ultraviolet cutoff to achieve this goal).

Remark 1. Any theory exhibits infinite volume divergences for questions of a stationary
nature. For example, such divergences even arise already when n = 1 and we deal with
time alone, as for example with a conventional, stationary Ornstein–Uhlenbeck (O–U) process

10
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U(t) ≡ 2−1/2 e−tW(e2t ),−∞ < t < ∞, where W(τ), 0 � τ < ∞, denotes a standard,
Gaussian, Wiener process for which W(0) = 0, E(W(τ)) = 0, and E(W(τ1)W(τ2)) =
min(τ1, τ2), where E denotes ensemble average. Although the O–U paths are concentrated on
bounded, continuous paths, it nevertheless follows that

E
(∫ ∞

−∞
U(t)2 dt

)
= ∞ (62)

due to the stationarity of the process.

Unlike the quadratic mass and quartic interaction terms, the coefficients of the derivative
terms and the inverse-square field counter term are inverse to one another and do not have finite
nonzero limits when L → ∞ and a → 0 such that the spatial volume V ′ = (La)s is finite. This
aspect is not unexpected since (i) the coefficient of the counter term is intimately linked to that
of the derivative term so that the field power that appears in the denominator factor D2 in the
ground state distribution is (N ′ − 1)/2N ′, and (ii) this fact leads to a significant redistribution
of probability toward the origin of field space, which then requires an asymptotically small Z
factor to re-establish reasonable field averages.

5.6. Numerical studies

In a certain sense, the most basic pseudofree model lacks both the quartic coupling and the
mass term. This leads to the idealized (I) model described by

SI (h) ≡ M

∫
exp

{
�khkφka

n/h̄ − 1

2
[N ′2(qa)(s−1)]−1

∑
k

∑
k∗

(φk∗ − φk)
2an−2/h̄

− 1

2
h̄2[N ′2(qa)(s−1)]

∑
k

Fk(φ)an/h̄

}
�k dφk. (63)

If we combine the factors of a, as well as transform the fields φk to remove both h̄ and q from
the idealized action, it follows that

SI (h) = M

∫
exp

{
�kh̃kφka

n − 1

2
N ′−2

∑
k

∑
k∗

(φk∗ − φk)
2 − 1

2
N ′2∑

k

Ek(φ)

}
�k dφk, (64)

where h̃k ≡ q(s−1)/2hk/h̄
1/2 and

Ek(φ) ≡ a2sFk(φ); (65)

note that Ek(φ) is dimensionless apart from any that may arise from its inverse-square field
dependence. One last transformation, in which φk → N ′φk , leads to the expression

SI (h) = M

∫
exp

{
�kh̃kφkN

′an − 1

2

∑
k

∑
k∗

(φk∗ − φk)
2 − 1

2

∑
k

Ek(φ)

}
�k dφk; (66)

in the above expressions we have used the same symbol (M) for the normalization factor
even though it has absorbed different Jacobian factors. This last version may be useful for
numerical studies of this basic pseudofree model. As argued in section 5, the mass term and
the quartic coupling terms can both be added by divergence-free perturbation series.

More directly, Monte Carlo studies may be made of the full nonlinear lattice theory. This
can be done with a variety of rescaled field variables, but perhaps the most convenient is that

11
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of equation (66). In those field variables, the Euclidean lattice space probability distribution
is given by

C exp

{
−1

2

∑
k

∑
k∗

(φk∗ − φk)
2 − 1

2
[N ′aq−1]m2

∑
k

φ2
k − [N ′3aqs−2]λ

∑
k

φ4
k − 1

2

∑
k

Ek(φ)

}
,

(67)

where C denotes an overall normalization factor. Traditional Monte Carlo methods may
be used with this weighting to approximately determine various correlation functions. The
coefficients of the m2 and λ terms are direct transcriptions of those determined earlier in the
present section. They have been estimated to be suitable for all values of a and L for which
La < ∞. Thus they should also hold in the continuum limit with finite spatial and spacetime
volumes. Any divergences that arise in the infinite spatial and spacetime volume limit should
only be those that typically arise for stationary questions, such as illustrated earlier with
the one-dimensional Ornstein–Uhlenbeck process; such divergences are expected and do not
require any special treatment.

6. Additional discussion and conclusions

In [4] there is an extensive discussion of soluble, scalar nonrenormalizable models that are
idealized versions of the relativistic model treated in the present paper. Such models differ
from the relativistic model in that in one case all spacetime derivative terms are omitted from
the classical action and in the second case all but one of the derivative terms are dropped;
in this latter case, the remaining term is identified with the eventual time direction in an
analogue of a Wick rotation. These models have no physics and are only of academic interest.
Nevertheless, from a mathematical viewpoint both of these models lead to Gaussian results
if no further counter terms are introduced, and if they are studied perturbatively, they are
both nonrenormalizable. Fortunately, both of these models have sufficient symmetry so that
they can be rigorously solved on the basis of self-consistency without using any form of
perturbation theory. One of the results for both models is that as the coupling constant of
the nonlinear interaction term is reduced to zero, the theories do not return to the appropriate
free theory but instead they pass continuously to an appropriate pseudofree theory. Moreover,
both theories exhibit meaningful, divergence-free perturbation theories about the pseudofree
theory, but definitely not about the customary free theory. These models are explicitly worked
out in chapters 9 and 10 of [4], but there is also a natural reason why such results are plausible.

Nonrenormalizable quantum field theories have exceptionally strong interaction terms.
This statement can be quantified as follows: consider the ϕ

p
n relativistic scalar theory which

has a free (Euclidean) action given by

W = 1

2

∫
[(∇ϕ)(x)2 + m2ϕ(x)2] dnx, (68)

where x ∈ R
n. These theories have the nonlinear interaction term

V =
∫

ϕ(x)p dnx, (69)

where we focus on cases where p ∈ {4, 6, 8, . . .}. Such expressions appear in a formal
functional integral such as

Sλ(h) = N
∫

e
∫
hϕ dnx−W−λVDϕ. (70)

12
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If limλ→0 Sλ(h) = S0(h), then the interacting theory is continuously connected to the
free theory; if, instead, limλ→0 Sλ(h) = S̃0(h) �= S0(h), then the interacting theory is
not continuously connected to the free theory, but rather it is continuously connected to a
psuedofree theory. Under what conditions could this latter situation arise?

Consider the classical Sobolev-type inequality ([4], chapter 8) given (for ϕ �≡ 0) by{∫
ϕ(x)p dnx

}2/p / {∫
[(∇ϕ)(x)2 + m2ϕ(x)2] dnx

}
� R (71)

as a function of the parameters p and n. For p � 2n/(n − 2), it follows that R = 4/3;
for p > 2n/(n − 2), R = ∞ holds. This dichotomy is exactly that between perturbatively
renormalizable and perturbatively nonrenormalizable models. But why should this inequality
relate to renormalizability?

It is the author’s long-held belief that the explanation arises from a hard-core behavior of
nonrenormalizable interactions [8]. Simply stated, the interaction for such theories is so strong
that a set of nonzero measure of the field histories allowed by the free theory alone is projected
out when the interaction term is present. For example, R = ∞ means that there are fields for
which V is not dominated by W in the same way as when R = 4/3. This fact suggests that for
positive coupling constant values, some of the field histories are projected out never to return as
the coupling constant passes to zero. This result is the effect of a hard core at work. For the first
idealized model mentioned above, the analogous ratio is

{∫
ϕ(x)4 dnx

}1/2/{∫
m2ϕ(x)2 dnx

}
,

which for any n � 1 clearly has no finite upper bound, while for the second idealized model,
the appropriate ratio reads

{∫
ϕ(x)4 dnx

}1/2/{∫
[ϕ̇(x)2 +m2ϕ(x)2] dnx

}
, which, in this case for

any n � 2, has no finite upper bound. These soluble models—each more singular in principle
than the relativistic models—are examples of hard-core interactions that nevertheless have
divergence-free perturbations about their own pseuofree model. This set of facts strongly
suggests that relativistic scalar fields such as ϕ4

n, n � 5, as we have focused on, also have a
corresponding hard-core behavior.

The soluble, idealized models have formulations that involve inverse field powers; indeed,
the second model, which lies closer to the relativistic models, has an inverse-square field power
counter term in the lattice action itself. For both idealized models, the needed counter term
was not assumed, it was derived, thanks to a large symmetry of the model. For the relativistic
models, there is insufficient symmetry to derive the needed counter term, and thus the counter
term must be postulated, i.e, guessed. There have been several past suggestions that have not
lived up to expectations. The present paper offers one more proposal that seems to satisfy the
expected requirements.

Unfortunately, the present model is not (or at least seems not) analytically tractable,
probably lacking a technical means to analytically perform perturbation calculations about
the pseudofree theory. Nevertheless, it would seem possible that numerical Monte Carlo
calculations should be feasible. The first such calculation that should be made is a test for
non-triviality that is applied to such theories by testing whether or not the Gaussian property
that

〈(�khkφka
n)4〉 − 3〈(�khkφka

n)2〉2 = 0 (72)

holds true for all choices of {hk} as one approaches the continuum limit; a single violation
of this inequality would demonstrate that the continuum limit is not that of a free theory. In
view of the connection of such full spacetime correlation functions to those on a single spatial
surface, as shown in section 4, it seems unlikely that (72) holds true thanks to the chosen form
of the counter term; on the other hand, section 4 ultimately involves inequalities which might
allow (72) to sneak through.
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Should the above nontriviality test prove successful for a ϕ4
5 relativistic model, for

example, it would be worthwhile to study various three-dimensional models such as ϕ8
3 , ϕ

10
3 ,

etc.

Remark 2. It is noteworthy that if instead of the interaction λ0φ
4
n discussed in the present

paper we had started with g0φ
2r
n , where r ∈ {3, 4, 5, 6, . . .}, then it follows that such an

interaction would also possess a divergence-free perturbation expansion provided we choose

g0 = N ′(2r−1)qa(s−1)r−sg, (73)

where g is the physical coupling constant. Moreover, it follows that

Zrg0 = [N ′(qa)s]−1g, (74)

for all values of r, just as was the case for the mass term in (52) and for the quartic coupling
in (59).

It would also be interesting to reconsider the ϕ4
4 model, which, although perturbatively

renormalizable, has the property of tending to a Gaussian theory in the continuum limit
as shown by renormalization group studies as well as Monte Carlo studies. It is possible that
a nonperturbative and nontrivial ϕ4

4 model is still to be discovered.

6.1. The counter term from a factor ordering ambiguity

It is not without interest that the chosen counter term can be viewed as arising from a factor
ordering ambiguity. Let πk denote the classical momentum conjugate to the field φk for all k
in a spatial slice. The classical Hamiltonian reads

H = 1

2

∑
k

′
π2

k as + V0(φ) = 1

2

∑
k

′
DπkD

−2πkDas + V0(φ), (75)

where D = D(φ) ≡ �′
k

[
�′

lJk,lφ
2
l

](N ′−1)/4N ′
. Passing to the quantum theory leads to the

Hamiltonian operator [cf, (11)]

H = −h̄2

2
a−s

∑
k

′
D

∂

∂φk

D−2 ∂

∂φk

D + V0(φ) = −h̄2

2
a−s

∑
k

′ ∂2

∂φ2
k

+ V0(φ) +
h̄2

2

∑
k

′
Fk(φ)as.

(76)

6.2. Classical limit

When dealing with a nonrenormalizable ϕ4
n theory, we argued in section 1 against choosing

either no counter terms or those counter terms suggested by a regularized perturbation analysis
about the free theory. This was due, in part, to the fact that such theories tend not to have the
correct classical limit, namely, the original nonlinear classical theory one started with. That
property is clear in the case of no counter terms, which leads to a free quantum theory, and it
is effective as well when perturbative counter terms are considered because in the latter case
there is no complete and well-defined quantum theory for which the classical limit can be
studied.

One strong test of whether or not the ideas in this paper have some validity would be
to try to take the classical limit and confirm that the expected nonlinear relativistic theory
emerges. The study of this question first requires having some control on the continuum limit,
but in support of its possible realization we note that the second idealized model treated in
chapter 10 of [4], namely, the model including the time derivative of the field, has been shown
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to indeed have the correct classical limit for the idealized but nonlinearly interacting model in
question. It is possible that similar techniques may be used to show that the presently proposed
quantization scheme for nonrenormalizable ϕ4

n models has a classical limit that agrees with
the original nonlinear classical theory.

Even if our proposal leads to a nontrivial quantum theory, and even if that quantum theory
exhibits a correct classical limit, the question may arise whether this proposal for quantization
is the ‘correct’ quantization procedure. As in any quantization procedure, where one starts
from a theory with h̄ = 0 and constructs a theory with h̄ > 0, there is a great deal of latitude
in the result. Nevertheless, in the absence of any other satisfactory proposal to deal with
nonrenormalizable theories, one might look favorably on a model that offers more than was
previously available.
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